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Abstract

Nitromethane is a known toxicant and suspected human carcinogen. Exposure to nitromethane in a 

representative sample of the civilian, non-institutionalized population in the United States ≥12 

years old was assessed using 2007 – 2012 National Health and Nutritional Examination Survey 

(NHANES) data. Nitromethane was detected in all 8,000 human blood samples collected, of 

which 6,730 were used for analyses reported here. Sample-weighted median blood nitromethane 

was higher among exclusive combusted tobacco users (exclusive smokers; 774 ng/L) than non-

users of tobacco products (625 ng/L). In stratified sample-weighted regression analysis, smoking 

0.5 pack of cigarettes per day was associated with an increase in blood nitromethane by 150 ng/L, 

and secondhand smoke exposure (serum cotinine >0.05 ng/mL and <10 ng/mL) was associated 

with a 31.1 ng/L increase in blood nitromethane. Significant, but smaller increases in blood 

nitromethane were associated with certain dietary sources. At median consumption levels, blood 

nitromethane was associated with an increase of 7.55 ng/L (meat/poultry), 9.32 ng/L (grain 

products), and 14.5 ng/L (vegetables). This is the first assessment of the magnitude and relative 

source apportionment of nitromethane exposure in the U.S. population.
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Introduction:

Nitromethane is a colorless, flammable, polar liquid commonly used in industry as a solvent 

for cyanoacrylate adhesives and as a stabilizer in halogenated solvents for vapor degreasing 

and dry cleaning.1 When mixed with methanol, nitromethane is used as a fuel source in 

professional drag racing and by hobbyists who operate radio-controlled cars and aircraft. 

Cigarette smoke contains nitromethane in the microgram range (0.9 – 6.5 µg/cigarette).2 
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Nitromethane is also detectable in exhaust fumes from diesel and gasoline engines.3 In vivo, 

nitromethane forms through the non-enzymatic dehalogenation of trihalonitromethanes 

(THNMs);4 the THNM chloropicrin is a food crop fumigant and can also form as a 

byproduct during water disinfection.5

Nitromethane enters the body via inhalation, ingestion, or dermal absorption. Blood 

nitromethane is a relatively short-lived exposure biomarker with a serum nitromethane half-

life of 13.5 hrs6; controlled nitromethane exposure of non-human primates indicates that 

plasma nitromethane levels peak 0.3 – 6 hrs after exposure.7 Exposure to high 

concentrations of nitromethane can irritate the eyes, nose, and throat and damage the central 

nervous system, lungs, and liver.8 Nitromethane has been shown to be carcinogenic in 

animal studies and is classified as a possible human carcinogen (Group 2B).9, 10 The 

Occupational Safety and Health Administration (OSHA) has set a permissible exposure limit 

of 100 ppm and an immediately dangerous to life or health concentration of 750 ppm.8 In 

one case study, two workers with prolonged dermal and inhalation exposure to nitromethane 

developed severe cases of peripheral neuropathy.11 Despite the potential health impact of 

nitromethane, exposure has not been characterized for a population-representative sample. 

Population-based biomonitoring data is useful for understanding the prevalence and 

magnitude of exposure, as well as the impact of regulatory change.12 We assessed blood 

nitromethane data from 8,000 participants 12 years of age and older as part of the 2007–

2012 National Health and Nutrition Examination Survey (NHANES), and used sample-

weighted multiple linear regression models to explore significant exposures.

Subjects and methods:

Study Design

NHANES is designed to assess the health and nutritional status of the US population by 

collecting questionnaire and physical examination data, as well as biologic samples, during 

two-year sampling cycles.13 Each participant is initially interviewed at home, completes 

several questionnaires, and undergoes physical examination at the NHANES Mobile 

Examination Center. A total of 8,000 participants 12 years of age and older had blood 

nitromethane data recorded during the 2007 – 2008, 2009 – 2010, and 2011 – 2012 

NHANES cycles, of which a subset (see below) was used to obtain results reported herein.

Laboratory Method

In 2008, several of the authors in collaboration with other researchers published a method 

that quantified nitromethane in human blood with a limit of detection of 65 ng/L.4 Whole 

blood (3mL) was spiked with stable isotope-labeled nitromethane (13CH3NO2) internal 

standard into a 10mL vial before it was hermetically sealed with a Teflon-lined silicone 

septum. The vial headspace was sampled via solid-phase microextraction and analyzed using 

gas chromatography–high-resolution mass spectrometry. A 6890 Agilent GC (Palo Alto, 

CA) and a MAT95XP magnetic sector MS (Thermo Fisher Scientific Inc., Waltham, MA) 

were used. Xcalibur software (v1.3, Thermo Fisher Scientific Inc.) was used to process and 

quantitate nitromethane results. Reported results met the accuracy and precision 
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specifications of the quality control/quality assurance program of the CDC National Center 

for Environmental Health, Division of Laboratory Sciences.14

Determination of Combusted Tobacco Use

Based on NHANES questionnaire data on recent tobacco use (NHANES dataset: 

SMQRTU), NHANES participants were excluded from analysis if they reported using 

smokeless tobacco or nicotine replacement therapy, as indicated by responding “yes” to 

question SMQ680 (tobacco or nicotine use within 5 days prior to NHANES physical 

examination) and “yes” to at least one of SMQ690D – SMQ690F (smokeless tobacco and 

nicotine delivery products). These participants were excluded because smokeless tobacco 

and nicotine replacement therapy are alternative sources of nicotine (and hence its 

metabolite cotinine), but whose use does not involve combustion. The remaining participants 

were then identified as exclusive users of combusted tobacco products (named “exclusive 

combusted tobacco users” or “exclusive smokers” in this report) if they responded “yes” to 

SMQ680 and “yes” to at least one of SMQ690A – SMQ690C (cigarettes, pipes, cigars). 

Participants were identified as non-users of tobacco products if they answered “no” to 

SMQ680 or were both missing a response to SMQ680 and had serum cotinine ≤10 ng/mL. 

The serum cotinine threshold of >10 ng/mL has been identified as consistent with active use 

of combusted tobacco products, and was used to stratify self-identified exclusive smokers 

and non-users in statistical analyses reported herein.15 Participants were excluded from 

analysis for use of smokeless tobacco and nicotine replacement therapy (N=244), for 

missing serum cotinine data (N=3), or for missing data for other variables used in regression 

models (N=1,023). This attrition left 6,730 study participants eligible for statistical analysis.

Statistical Analysis

Because NHANES participants are recruited through a multistage probability sample, it is 

necessary to account for this complex design to estimate variances properly and to produce 

unbiased, nationally representative statistics. Robust estimation may be accomplished by 

applying survey sample weights to each participant’s data and using Taylor series 

linearization to produce variance estimates. We used this estimation approach as 

implemented in the DESCRIPT subroutine of SUDAAN version 11.0.0 (Research Triangle 

Institute, Research Triangle Park, NC) called from the SAS statistical software application 

version 9.4 (SAS Institute, Cary, NC), as well as the SURVEYREG and SURVEYMEANS 

subroutines of SAS 9.4. Sample-weighted linear regression models stratified by tobacco use 

were fit to data from NHANES survey cycles 2007 – 2008, 2009 – 2010, and 2011 – 2012, 

where the dependent variable was blood nitromethane concentration (ng/L). Because the 

distribution of measurements was strongly right-skewed, which could have adversely 

affected hypothesis testing, the blood nitromethane concentration data was transformed with 

the natural log for regression analysis. We report slopes from these models along with their 

95 percent confidence intervals and p-values. In addition, to facilitate interpretability, we 

report the slopes transformed to represent the absolute change in biomarker concentration 

ΔY associated with a unit-increase in the predictor ΔX, as adapted from Rodríguez-Barranco, 

et al., 201716: ΔY = exp ΔX ⋅ β − 1 ⋅ GM Y , where GM Y  is the sample-weighted geometric 

mean of biomarker concentration. The tabulated regression results in Table 3 assume ΔX = 1, 
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so that ΔY represents the absolute change associated with a unit-increase in the predictor. 

The 95 percent confidence interval is: 95%CI ΔY = exp ΔX ⋅ β ± 1.96 ⋅ se β − 1 ⋅ GM Y , 

where se β  is the sample-weighted standard error of the slope. Both ΔY and its 95%CI are 

calculated at GM[Y], which is reported in the caption accompanying the tabulated regression 

results. Since this geometric mean is treated as a fixed quantity, the width of the 95%CI may 

be slightly underestimated. In addition, at values different from the geometric mean, the 

value of ΔY and the width of its 95%CI will vary, owing to the log transformation of the 

dependent variable. Statistical significance was set to α ≤ 0.05.

Sample-weighted regression models were stratified by combusted tobacco use, and the 

following variables were included as predictors: sex, age, race/ethnicity, poverty income 

ratio (PIR; ratio of self-reported family income to the U.S. Census poverty threshold), and 

fasting time (time elapsed since participant last ate or drank anything other than water and 

the time of specimen collection). Information for these potential confounders was self-

reported. Age [year] was categorized into the following ranges: 12 – 19, 20 – 39, 40 – 59, 

and ≥60. Poverty level was determined by whether the ratio of a family’s income to poverty 

(INDFMPIR) was greater or less than the poverty threshold, which is represented by the 

ratio equaling unity.13 In addition, body mass index (BMI) from measurements at the 

physical examination was included as a predictor. Since standard definitions for underweight 

(BMI < 18.5 kg/m2), healthy weight (18.5 ≤ BMI < 25), and overweight/obese (BMI ≥ 25) 

apply to adults ≥20 y, participants younger than 20 y were classified based on their BMI 

percentile for their sex and age: below the 5th percentile (underweight), between the 5th and 

85th percentile (healthy weight), and above the 85th percentile (overweight/obese).17 

NHANES cycle was also included as a predictor.

Food consumption information was collected from participants using structured 

questionnaires administered by trained interviewers who used intensive elicitation 

techniques to translate a participant’s recollection of the type and amount of food consumed 

to a standardized numerical encoding and food mass. Dietary exposure was explored by 

assessing the mass NHANES participants consumed within each USDA (US Department of 

Agriculture) food group for the 24-hour period (midnight to midnight) preceding the in-

person dietary recall interview conducted as part of the physical examination. Data for the 

24-hour recall period are contained in the publicly available NHANES Individual Foods – 

First Day file (NHANES dataset: DR1IFF), which provides a record describing each food, 

water, or beverage consumed by the participant, including the mass reported consumed and 

eight-digit USDA food code. Standardized hierarchical food groups can be identified from 

the USDA code, where the first digit represents one of nine major food groups, and each 

subsequent digit represents subgroups of increasing specificity.18 The mass consumed in 

each food group was summed so that each participant was represented by a single record 

describing their dietary intake for the previous 24 hours. Each participant’s dietary intake 

was first apportioned over nine food groups: milk products; meat/poultry; eggs; legumes/

nuts/seeds; grain products; fruits; vegetables; fats/oils/salad dressings; and sugars/sweets/

beverages. In addition, we distinguished three subgroups: cured meats, luncheon meats and 

hot dogs, and tap water. The cured meats food group was constructed using the search term 

“cured” in the USDA What We Eat In America search tool and selecting all food codes 
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referring to meats.19 The luncheon meat and hot dog food group was constructed by 

searching the term “luncheon” and selecting all meat food codes and searching “hot dog.” 

The tap water food group was constructed by searching “tap water.” To avoid double 

counting, the mass consumed in each subgroup was subtracted from the mass consumed in 

their respective food group. The USDA food codes and logic for apportioning dietary intake 

are detailed in Supplemental Table S1.

Serum cotinine was used as a continuous predictor to represent tobacco smoke exposure for 

both exclusive combusted tobacco users and non-users of tobacco products. Cotinine is a 

highly specific metabolite of nicotine, the primary addictive agent in tobacco and tobacco 

smoke, and is thereby present in the blood serum of tobacco smokers. Likewise, since 

tobacco smoke exposure among non-users of tobacco products is attributable to inhalation of 

secondhand tobacco smoke (SHS), this exposure can be quantified with serum cotinine. In 

addition, to provide an alternative representation of tobacco smoke exposure, we ran a 

regression model where exposure among exclusive smokers was represented by the self-

reported average number of cigarettes smoked per day (CPD) over the five days preceding 

the NHANES physical exam. This CPD regression model was sample-weighted, 

unstratified, and comprised the same predictors as in the stratified models, except that 

exposure was classified as ≤0.05 ng/mL serum cotinine (non-exposed to tobacco smoke); 

>0.05 – ≤10 ng/mL (presumptively exposed to second-hand tobacco smoke); 1 – 10 

cigarettes per day (CPD; 0.5 pack), 11 – 20 (1 pack), and >20 (>1 pack), where the reference 

category was non-exposed participants. The non-exposed category was defined at ≤0.05 

ng/mL serum cotinine, which was its LOD in the 1999 – 2000 NHANES cycle, and although 

this improved in 2001 to 0.015 ng/mL, we use 0.05 ng/mL to permit historical comparison 

of serum cotinine results.20 The analytic dataset for the CPD model comprised the same 

participants as in the stratified models, but excluded participants who could not be assigned 

to a CPD category (N=266), leaving 6,464 participants.

Results:

Nitromethane was detected in all 8,000 blood samples from the 2007–2012 NHANES 

cycles. Measurements ranged from 195 to 5,830 ng/L. Table 1 displays demographic 

distributions for non-users (N=5,345) and exclusive smokers (N=1,385) eligible for 

statistical analysis. Sample-weighted medians with 25th and 75th percentiles for blood 

nitromethane among non-users and exclusive smokers are detailed in Table 2. The sample-

weighted median nitromethane for exclusive smokers (774 ng/L) was higher than non-users 

(625 ng/L). Sample-weighted geometric means and additional percentiles for blood 

nitromethane stratified by non-users and exclusive smokers are available in Supplemental 

Tables S2 and S3.

Table 3 presents results from sample-weighted multivariable regression analyses. Blood 

nitromethane was significantly and positively associated with serum cotinine among non-

users (ΔY=10.8 ng/L per cotinine ng/mL) and exclusive smokers (ΔY=0.402 ng/L per 

cotinine ng/mL), adjusted for sex, age, race/ethnicity, BMI, poverty status, fasting time, 

NHANES cycle, and diet. Among non-users, nitromethane was positively associated with 

consuming meat/poultry (ΔY=43.7 ng/L per kg/day consumed), legumes/nuts/seeds 
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(ΔY=147 ng/L per kg/day), grain products (ΔY=38.0 ng/L per kg/day), and vegetables 

(ΔY=148 ng/L per kg/day), while negatively associated with consuming sweets/beverages/

sugars (ΔY=−8.80 ng/L per kg/day). Among exclusive smokers, blood nitromethane was 

positively associated with eating meat/poultry (ΔY=114 ng/L per kg/day consumed), while 

negatively associated with consuming eggs (ΔY=−143 ng/L per kg/day) and sweets/ 

beverages/sugars (ΔY=−13.4 ng/L per kg/day).

Among non-users and exclusive smokers, Table 3 shows that blood nitromethane was higher 

among females, although this was only significant among non-users. The rank-order of 

differences in nitromethane increased with age and BMI, although statistically significant 

differences with their respective reference group varied between non-users and exclusive 

smokers. Mexican Americans and Non-Hispanic Blacks had significantly higher blood 

nitromethane than Non-Hispanic Whites for both non-users and exclusive smokers, while 

Other Race non-users had significantly higher blood nitromethane.

Figure 1 displays the least-square means of blood nitromethane for exposure categories in 

the sample-weighted, unstratified CPD regression model (N=6,464). At successively higher 

exposure levels, Figure 1 demonstrates significantly greater blood nitromethane compared to 

the ≤0.05 ng/mL serum cotinine (non-exposed) reference group. Blood nitromethane among 

non-users exposed to SHS was significantly higher by 31.1 ng/L than non-exposed (≤0.05 

ng/mL serum cotinine) non-users, adjusted for sex, age, race/ethnicity, BMI, poverty status, 

fasting time, NHANES cycle, and diet. Smoking 1–10 CPD (0.5 pack) among exclusive 

combusted tobacco users was associated with a larger increase of 150 ng/L blood 

nitromethane over non-exposed non-users, with greater increases through successively 

higher CPD levels. Quantitative results from the CPD regression model are reported in 

Supplemental Table S4.

Table 4 shows the United States median mass consumed of food groups that were 

statistically significant contributors to blood nitromethane in the CPD model: meat/poultry; 

grain products; and vegetables. All three food groups were significant contributors in the 

stratified non-user model, while only meat/poultry was significant in the exclusive smoker 

model. The sample-weighted median mass consumed and its respective CPD regression 

slope can be applied to the GM Y  to yield an estimate of the nitromethane exposure from the 

most likely amount consumed in the United States population, adjusted for sex, age, race/

ethnicity, BMI, poverty status, fasting time, NHANES cycle, and diet. In decreasing order of 

exposure, median consumption of vegetables would be associated with an increase in blood 

nitromethane of 14.5 ng/L; grain products with an increase of 9.32 ng/L nitromethane; and 

meat/poultry with an increase of 7.55 ng/L nitromethane. Other select percentiles of 

consumption of food groups are listed in Supplemental Table S5.

Discussion

Our analysis indicates that tobacco smoke is the predominant source of nitromethane 

exposure for the US population. Exclusive tobacco smokers had higher median blood 

nitromethane than non-users, and nitromethane increased significantly with serum cotinine 

for both non-users of tobacco products and exclusive smokers, controlling for potential 

Espenship et al. Page 6

Environ Sci Technol. Author manuscript; available in PMC 2020 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



confounders. Least-square means of blood nitromethane (Figure 1) also demonstrated 

consistent elevations as tobacco smoke exposure increased from non-exposed participants to 

SHS-exposed non-users, then continuing through escalating frequency of daily cigarette 

smoking frequency among exclusive smokers.

We also found that certain dietary sources significantly contributed to nitromethane 

exposure. Among both non-users and exclusive smokers, consuming meat/poultry was 

associated with higher blood nitromethane. Nitromethane can form during high temperature 

cooking of meat/poultry, which produces reactive nitrogen species that subsequently nitrate 

biomolecules to form nitromethane.4, 21, 22. Among non-users, consuming legumes/nuts/

seeds, grains products, and vegetables was associated with higher blood nitromethane. This 

may be attributable to residues of chloropicrin, a volatile fumigant used as an insecticide to 

protect food crops, which may degrade in situ to form nitromethane.23, 24 Chloropicrin has 

also been shown to dehalogenate to form nitromethane when added to blood in vitro.4

In the CPD model, smoking one-half pack of cigarettes per day was associated with an 

increase in blood nitromethane by 150 ng/L, and exposure to SHS among non-users was 

associated with an increase of 31.1 ng/L compared with non-exposed non-users. These 

increases are larger than increases associated with dietary sources, where the greatest 

increase of 14.5 ng/L was associated with the median dietary consumption of vegetables 

(Table 4). While diet is a potential exposure source, the “time of food fasting” was not 

significant for any models; previous modeling of other diet-driven and short-lived exposure 

biomarkers (e.g. perchlorate) find that “time of food fasting” predicts decreased biomarker 

levels.25, 26

Drinking water was also investigated as a possible source of nitromethane exposure. 

Trihalonitromethanes can be formed as a by-product of drinking water disinfection, and 

subsequently form nitromethane in vivo.27,28 THNMs are not widely prevalent in drinking 

water, however, and are observed in the low parts-per-billion range.27,28 An individual 

drinking two liters of water per day may ingest up to about 20 ng THNMs, but these would 

dehalogenate in vivo to form only a few nanograms of nitromethane. We found that self-

reported tap water consumption was not a significant predictor of blood nitromethane.

Contributions to exposure from tobacco smoke and diet notwithstanding, neither our data 

nor our models account for all potential routes of nitromethane. Air pollution is known to 

contain nitromethane from sources such as vehicle emissions and photochemical smog3, 29, 

but air monitoring data for NHANES participants is not directly accessible. Occupational 

exposures are also possible, and although the number of workers who handle nitromethane is 

a small proportion of the US population30, occupational information is sparse for NHANES 

participants. In addition, nitromethane may be formed endogenously. Macrophage 

activation, for example, is known to produce reactive nitrating species that can react with 

biomolecules to form nitromethane.4,31 Additionally, oxidative metabolism is known to 

produce oxygen radicals that could similarly react with nitrogenous biomolecules to form 

nitromethane.31 Oxygen radicals and oxidative damage increase with age, so our observation 

that nitromethane increased with age may be attributable to age-dependent increases in 

oxidative damage.32
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Least-square means (95% CI) for blood nitromethane (ng/L) increases with tobacco smoke 

exposure, represented by serum cotinine (non-users) and self-reported cigarettes per day 

(CPD; exclusive smokers), and controlling for other predictors in the model (Supplemental 

Table S4). NHANES 2007–2012 (N=6,464).

Espenship et al. Page 10

Environ Sci Technol. Author manuscript; available in PMC 2020 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Espenship et al. Page 11

Table 1.

Sample-weighted demographic distribution of exclusive smokers and non-users in NHANES 2007 – 2012 ≥ 

12 years-old (N = 6,730)
a

Demographic Category
Exclusive Smokers Non-users

N
b

% (SE
c
) N

b
% (SE

c
)

NHANES Cycle 2007 – 2008 500 7.47 (0.79) 1,864 27.03 (1.35)

2009 – 2010 514 7.01 (0.57) 1,993 25.47 (1.21)

2011 – 2012 371 6.63 (0.63) 1,488 26.39 (1.62)

Age (years) 12–19 112 1.10 (0.13) 1,045 11.31 (0.56)

20–39 545 8.87 (0.50) 1,393 23.76 (1.10)

40–59 472 8.35 (0.58) 1,322 25.09 (0.97)

≥60 256 2.78 (0.18) 1,585 18.74 (0.86)

Sex Male 826 12.21 (0.65) 2,505 36.09 (0.74)

Female 559 8.89 (0.48) 2,840 42.81 (0.64)

Race/Ethnicity Non-Hispanic White 725 15.33 (1.09) 2,264 53.68 (1.68)

Non-Hispanic Black 349 2.89 (0.30) 1,078 8.27 (0.94)

Mexican American 141 1.21 (0.20) 1,008 7.37 (1.02)

Other Race 170 1.67 (0.23) 995 9.56 (0.82)

BMI Underweight 45 0.62 (0.14) 70 0.87 (0.17)

Healthy weight 475 7.27 (0.47) 1,724 26.18 (1.08)

Overweight/Obese 865 13.22 (0.72) 3,551 51.85 (1.02)

Poverty status No 926 15.81 (0.78) 4,252 68.77 (1.07)

Yes 459 5.29 (0.43) 1,093 10.12 (0.87)

a
Same data as in stratified serum cotinine regression models.

b
Sample size, unweighted.

c
Standard error.
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Table 2.

Nitromethane sample-weighted medians (ng/L) with 25th and 75th percentiles for exclusive smokers and non-

users, NHANES 2007–2012 (N=6,730)
a

Demographic Category
Median (ng/L)

[25th, 75th Percentiles],
exclusive smokers

Median (ng/L)
[25th, 75th Percentiles],

non-users

All 774
[633, 955]

625
[502, 797]

NHANES Cycle 2007 – 2008 763
[628, 954]

627
[511, 815]

2009 – 2010 788
[645, 954]

615
[495, 793]

2011 – 2012 779
[624, 958]

631
[509, 781]

Age (years) 12–19 668
[559, 829]

556
[459, 709]

20–39 750
[631, 927]

619
[501, 761]

40–59 781
[630, 945]

631
[508, 812]

≥60 885
[696, 1150]

669
[535, 885]

Sex Male 773
[628, 951]

614
[497, 773]

Female 774
[645, 956]

635
[510, 814]

Race/Ethnicity Non-Hispanic White 772
[627, 954]

610
[494, 759]

Non-Hispanic Black 853
[683, 1040]

673
[535, 870]

Mexican American 749
[634, 946]

649
[519, 836]

Other Race 729
[632, 900]

692
[544, 884]

BMI Underweight 736
[613, 834]

551
[467, 679]

Healthy weight 745
[608, 918]

588
[473, 754]

Overweight/Obese 790
[647, 965]

639
[523, 812]

Poverty status No 773
[632, 948]

628
[508, 793]

Yes 785
[635, 988]

601
[478, 818]

a
Same data as in stratified cotinine regression models.
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Table 4.

Increase in blood nitromethane (ng/L) associated with median daily consumption of food group (kg/day). The 

geometric mean of blood nitromethane used for computing ΔY [95%CI] is 672 ng/L. NHANES 2007 – 2012 

(N=6,464).

Food Group SE[β]
a

Median Consumed [95% CI]
b
 (kg/day) ΔY [95% CI]

c
 (ng/L)

Meat, poultry 0.0246 0.140 [0.133, 0.146] 7.55 [2.97, 12.2]

Grain products 0.0212 0.259 [0.246, 0.271] 9.32 [2.05, 16.7]

Vegetables 0.0342 0.115 [0.108, 0.123] 14.5 [9.21, 19.8]

a
Sample-weighted standard error of the regression slope for food group used to compute 95%CI of ΔY.

b
Sample-weighted median daily amount of food group consumed.

c
Expected change in nitromethane concentration associated with consuming the median amount of food group at the overall geometric mean, 

controlling for predictors in the CPD regression model.
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